Abstract

Carbon nanotubes are composed of carbon atoms linked in hexagonal shapes, with each carbon atom covalently bonded to three other carbon atoms. Carbon nanotubes have diameters as small as 1 nm and lengths up to several centimeters. Carbon nanotubes can be open-ended or closed-ended (fullerenes). Open-ended single-walled carbon nanotubes are also called tubulenes. The resonance graph R(T) of a tubulene T reflects interactions between Kekule structures—i.e. perfect matchings of T. With the orientation of edges the resonance digraph \(\overrightarrow{R}(T)\) of a tubulene is obtained. As the main result we show that \(\overrightarrow{R}(T)\) is isomorphic to the Hasse diagram of the direct sum of some distributive lattices. Similar results were proved in [10, 16], but one can not directly apply them to tubulenes. As a consequence of the main result it is proved that every connected component of R(T) is a median graph. Further we show that the block graph of every connected component H of the resonance graph of a tubulene is a path and that H contains at most two vertices of degree one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.