Abstract
Let G be a plane bipartite graph and M(G) the set of perfect matchings of G. The Z-transformation graph of G is defined as a graph on M(G): M,M′∈M(G) are joined by an edge if and only if they differ only in one cycle that is the boundary of an inner face of G. A property that a certain orientation of the Z-transformation graph of G is acyclic implies a partially ordered relation on M(G). An equivalent definition of the poset M(G) is discussed in detail. If G is elementary, the following main results are obtained in this article: the poset M(G) is a finite distributive lattice, and its Hasse diagram is isomorphic to the Z-transformation digraph of G. Further, a distributive lattice structure is established on the set of perfect matchings of any plane bipartite graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.