Abstract
In this paper, we propose a new class of distributed joint source-channel coding (DJSCC) methods, namely triple polar codes (T-PC), for transmitting a pair of correlated binary sources over noisy channels. In the T-PC structure, one source is protected by a systematic polar code (SPC), and the other source is encoded into a double polar code (D-PC) word. Following this, we prove the T-PC approaches the corner point of the achievable rate-region of DJSCC. We further propose a distributed joint source-channel decoding algorithm, which involves two components: a cyclic redundancy check (CRC) aided successive cancellation list (CA-SCL) decoding of the SPC and a joint successive cancellation list (J-SCL) decoding of the D-PC. The CA-SCL and J-SCL decoding procedures alternately generate hard-decisions of sources which are iteratively exchanged as the side information and result in superior performance compared with the state-of-the-art polar code based DJSCC scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.