Abstract

This paper deals with distributed registration of a sensor network for target tracking in the presence of false and/or missed measurements. Each sensor acquires measurements of the target position in local coordinates, having no knowledge about the relative positions (referred to as drift parameters) of its neighboring nodes. A distributed Bernoulli filter is run over the network to compute in each node a local posterior target density. Then a suitable cost function, expressing the discrepancy between the local posteriors in terms of averaged Kullback–Leibler divergence, is minimized with respect to the drift parameters for sensor registration purposes. In this way, a computationally feasible optimization approach for joint sensor registration and target tracking is devised. Finally, the effectiveness of the proposed approach is demonstrated through simulation experiments on both tree networks and networks with cycles, as well as with both linear and nonlinear sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call