Abstract

This paper addresses distributed registration of a sensor network for multitarget tracking. Each sensor gets measurements of the target position in a local coordinate frame, having no knowledge about the relative positions (referred to as drift parameters) and azimuths (referred to as orientation parameters) of its neighboring nodes. The multitarget set is modeled as an independent and identically distributed (i.i.d.) cluster random finite set (RFS), and a consensus cardinality probability hypothesis density (CPHD) filter is run over the network to recursively compute in each node the posterior RFS density. Then a suitable cost function, xpressing the discrepancy between the local posteriors in terms of averaged Kullback-Leibler divergence, is minimized with respect to the drift and orientation parameters for sensor registration purposes. In this way, a computationally feasible optimization approach for joint sensor registraton and multitarget tracking is devised. Finally, the effectiveness of the proposed approach is demonstrated through simulation experiments on both tree networks and networks with cycles, as well as with both linear and nonlinear sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.