Abstract
Soil legacy effects from previous crops can significantly influence plant–soil interactions in crop rotations. However, the microbial mechanism underlying this effect in subsequent root-associated compartments remains unclear. We investigated the effects of planting patterns (four-year continuous maize [MM], three-year winter wheat and one-year maize rotation [WM], and three-year potato and one-year maize rotation [PM]) on the microbial composition and structure of root-associated compartments, the effect of distinct crops on subsequent microbial co-occurrence patterns, and the assembly mechanism by which the root-associated compartments (bulk soil, rhizosphere, and roots) in subsequent crops regulate the microbiome habitat. Compared with MM, the relative abundance of Acidobacteria in WM was 29.7 % lower, whereas that of Bacteroidota in PM was 37.9 % higher in all three compartments. The co-occurrence patterns of the microbial communities exhibited varied responses to different planting patterns. Indicator taxon analysis revealed less shared and specific species in the root bacterial and fungal networks. The planting pattern elicited specific responses from modules within bacterial and fungal co-occurrence networks in all three compartments. Moreover, the planting patterns and root-associated compartments collectively drove the assembly process of root-associated microorganisms. The neutral model showed that, compared with MM, the stochasticity of bacterial assembly decreased under WM and PM but increased for fungal assembly. WM and PM increased the relative effects of the homogenized dispersal of fungal assemblies in roots. We conclude that previous crops exhibit marked legacy effects in the root-associated microbiome. Therefore, soil heritage should not be ignored when discussing microbiome recruitment strategies and co-occurrence patterns in subsequent crops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.