Abstract

The spiny mouse (Acomys species) is capable of scarless wound regeneration through largely yet unknown mechanisms. To investigate whether this capacity is related to peculiarities of the hemostatic system, we studied the blood of Acomys cahirinus in comparison to Mus musculus (Balb/c) to reveal differences in blood composition and clotting in both males and females. In response to surgical manipulations, blood clots formed in wounds of Acomys comprised a stronger hemostatic seal with reduced surgical bleeding in comparison with Balb/c. Acomys demonstrated notably shorter tail bleeding times and elevated clottable fibrinogen levels. Histological analysis revealed that clots from Acomys blood had densely packed fibrin-rich clots with pronounced fibrin segregation from erythrocytes. Acomys exhibited superior plasma clot stiffness as revealed with thromboelastography. The latter two characteristics are likely due to hyperfibrinogenemia. Light transmission platelet aggregometry demonstrated that ADP-induced platelet aggregates in Acomys males are stable, unlike the aggregates formed in the plasma of Balb/c undergoing progressive disaggregation over time. There were no apparent distinctions in platelet contractility and baseline expression of phosphatidylserine. Hematological profiling revealed a reduced erythrocytes count but increased mean corpuscular volume and hemoglobin content in Acomys. These results demonstrate the distinctive hemostatic potential of Acomys cahirinus, which may contribute to their remarkable regenerative capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.