Abstract
In the present study, we aimed to investigate enterocyte- and goblet cell-specific functions during the different phases of acute colitis induced with dextran sulfate sodium (DSS). Rats were treated with DSS for 7 days, followed by a 7-day recovery period. Colonic tissue was excised on days 2 (onset of disease), 7 (active disease), and 14 (regenerative phase). Enterocyte functions were studied by the expression of carbonic anhydrases (CAs), sodium/hydrogen exchangers (NHEs) and intestinal fatty acid-binding protein (iFABP) and by alkaline phosphatase (AP) activity. The expression and secretion of the mucin Muc2 and trefoil factor family peptide-3 (TFF3) were used as parameters for goblet cell function. DSS induced a downregulation of the CAs, NHEs, and iFABP in some normal-appearing surface enterocytes and in most of the flattened-surface enterocytes during disease onset and active disease. During the regenerative phase most enterocytes expressed these genes again. Quantitative analysis revealed a significant decrease in CAs, NHEs, and iFABP expression levels during onset and active disease. During the regenerative phase, the expression levels of the CAs were restored, whereas the expression levels of the NHEs and iFABP remained decreased. In contrast, enterocyte-specific AP activity was maintained in normal and flattened enterocytes during DSS-induced colitis. Goblet cells continued to express MUC2 and TFF3 during and after DSS treatment. Moreover, Muc2 and TFF3 expression and secretion levels were maintained or even increased during each of the DSS-induced disease phases. In conclusion, DSS-induced colitis was associated with decreased expression of CAs, NHEs, and iFABP. The loss of these genes possibly accounts for some of the pathology seen in colitis. The maintenance or upregulation of Muc2 and TFF3 synthesis and secretion levels implies that goblet cells at least maintain their epithelial defense and repair capacity during acute inflammation induced by DSS.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Gastrointestinal and liver physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.