Abstract

Membrane proteins, such as the Cystic Fibrosis Transmembrane-conductance Regulator (CFTR), play a crucial role in gastrointestinal functions and heath. Endoplasmic reticulum (ER) membrane protein complex (EMC), a multi-subunit insertase, mediates the incorporation of membrane segments into lipid bilayers during protein synthesis. Whether EMC regulates membrane proteins' processing and function in intestinal epithelial cells remains unclear. To investigate the role of EMC in the intestinal epithelium, we generated mice in which EMC subunit 3 (EMC3) was deleted in intestinal epithelial cells (EMC3ΔIEC). EMC3ΔIEC mice were viable but notable smaller compared to their wildtype littermates. While intestinal structure was generally maintained, EMC3ΔIEC crypts exhibited altered morphology, particularly at the base of the crypts with decreased goblet cells and paneth cells. Levels of multiple polytopic membrane proteins, including CFTR, were decreased in EMC3-deficient epithelial cells. Several calcium ATPase pumps were downregulated, and calcium mobilization was impaired in EMC3ΔIEC enteroids. CFTR-mediated organoid swelling in EMC3ΔIEC mice was impaired in response to both cAMP-dependent signaling and calcium-secretagogue stimulation. Our study demonstrated that EMC plays a critical role in maintaining intestinal epithelium homeostasis by regulating membrane protein biogenesis and intracellular calcium homeostasis. Maintaining intracellular calcium homeostasis may be a universal cellular function regulated by EMC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.