Abstract

To gain insight in intestinal epithelial proliferation, cell death, and gene expression during experimental colitis rats were treated with dextran sulfate sodium (DSS) for 7 days. Proximal and distal colonic segments were excised on days 2, 5, 7, and 28. Epithelial proliferation, cell death, enterocyte gene expression (carbonic anhydrase I (CA I) and goblet cell gene expression (mucin, MUC2; trefoil factor 3, TFF3) were studied immunohistochemically and biochemically. Proliferative activity was decreased in the proximal and distal colon at the onset of disease (day 2). However, during active disease (days 5-7) epithelial proliferation was increased in the entire proximal colon and in the proximity of ulcerations in the distal colon. During DSS treatment the number of apoptotic cells in the epithelium of both colonic segments was increased. In the entire colon surface enterocytes became flattened and CA I negative during active disease (day 5-7). Additionally, CA I levels in the distal colon significantly decreased during this phase. In contrast, during the regenerative phase (day 28) CA I levels were restored in the distal colon and up-regulated in the proximal colon. During all disease phases increased numbers of goblet cells were observed in the surface epithelium of the entire colon. In the distal colon TFF3 expression extended to the bottom of the crypts during active disease. Finally, MUC2 and TFF3 expression was increased in the proximal colon during disease. DSS affected the epithelium by inhibiting proliferation and inducing apoptosis. DSS-induced inhibition of CA I expression indicates down-regulation of specific enterocyte functions. Accumulation of goblet cells in the surface epithelium and up-regulation of MUC2 and TFF3 expression in the proximal colon underline the importance of goblet cells in epithelial protection and repair, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.