Abstract
Most transcription factor families contain highly related paralogs generated by gene duplication, and functional divergence is generally accomplished by activation of distinct sets of genes by each member. Here we compare the molecular functions of Myf5 and MyoD, two highly related bHLH transcription factors that regulate skeletal muscle specification and differentiation. We find that MyoD and Myf5 bind the same sites genome-wide but have distinct functions: Myf5 induces histone acetylation without Pol II recruitment or robust gene activation, whereas MyoD induces histone acetylation, recruits Pol II, and robustly activates gene transcription. Therefore, the initial specification of the muscle lineage by Myf5 occurs without significant induction of gene transcription. Transcription of the skeletal muscle program is then achieved by the subsequent expression of MyoD, which binds to the same sites as Myf5, indicating that each factor regulates distinct steps in gene initiation and transcription at a shared set of binding sites.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.