Abstract

Oscillatory phenomena play widespread roles in the control of biological systems. In D.discoideum, oscillatory cyclic adenosine monophosphate (cAMP) signaling drives collective behavior and induces a temporal developmental gene expression program. How collective cAMP oscillations emerge or how they encode temporal transcriptional information is still poorly understood. To address this, we identified a transcription factor required for the initiation of collective behavior. Hbx5 activity is cAMP dependent and provides a sensitive single-cell readout for cAMP signaling. Extensive stochastic pulsatile cAMP signaling is found to precede collective oscillations. Stochastic signaling induces Hbx5-dependent transcriptional feedback, which enhances signal sensitivity and cell-cell coupling. This results in the emergence of synchronized collective oscillations, which subsequently activates the GtaC transcription factor and triggers shifts in developmental gene expression. Our results suggest this temporal coordination is encoded by changes in the amplitude of cAMP oscillations and differential sensitivity of these transcription factors to the cAMP-regulated kinase ErkB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.