Abstract

The p140Cap adaptor protein is a scaffold molecule physiologically expressed in few epithelial tissues, such as the mammary gland, and in differentiated neurons. While the role of p140Cap in mammary gland epithelia is not still understood, we already know that a significant subset of breast cancers express p140Cap. In the subgroup of ERBB2-amplified breast cancers, a high p140Cap status predicts a significantly lower probability of developing a distant event and a clear difference in survival. p140Cap is causal in dampening ERBB2-positive tumor cell progression, impairing tumor onset and growth, and counteracting epithelial mesenchymal transition, resulting in decreased metastasis formation. Since only a few p140Cap interacting proteins have been identified in breast cancer and the molecular complexes and pathways underlying the cancer function of p140Cap are largely unknown, we generated a p140Cap interactome from ERBB2-positive breast cancer cells, identifying cancer specific components and those shared with the synaptic interactome. We identified 373 interacting proteins in cancer cells, including those with functions relevant to cell adhesion, protein homeostasis, regulation of cell cycle and apoptosis, which are frequently deregulated in cancer. Within the interactome, we identified 15 communities (clusters) with topology-functional relationships. In neurons, where p140Cap is key in regulating synaptogenesis, synaptic transmission and synaptic plasticity, it establishes an extensive interactome with proteins that cluster to sub complexes located in the postsynaptic density. p140Cap interactors converge on key synaptic processes, including synaptic transmission, actin cytoskeleton remodeling and cell-cell junction organization. Comparing the breast cancer to the synaptic interactome, we found 39 overlapping proteins, a relatively small overlap. However, cell adhesion and remodeling of actin cytoskeleton clearly emerge as common terms in the shared subset. Thus, the functional signature of the two interactomes is primarily determined by organ/tissue and functional specificity, while the overlap provides a list of shared functional terms, which might be linked to both cancer and neurological functions.

Highlights

  • Previous work from our laboratory and others indicates that in neurons, in physiological conditions, p140Cap has a key role in regulating synaptogenesis, synaptic transmission and synaptic plasticity (Jaworski et al, 2009; Tomasoni et al, 2013; Repetto et al, 2014)

  • We have already shown that upon transplantation in syngeneic mice, p140-NeuT-TUBO cell-derived tumors showed significantly limited growth and metastasis formation over tumors derived from implanted NeuT-TUBO cells (Grasso et al, 2017), demonstrating that in this breast cancer model, p140Cap is sufficient “per se” to impair in vivo tumor progression

  • We selected this cellular model to analyze and characterize the p140Cap interactome, in order to uncover protein complexes and the embedded functional pathways to which p140Cap may associate in breast cancer. p140-NeuT-TUBO cells in cell culture show a significant defect in cell proliferation associated to a reduced colony size in an anchorage-independent assay (Supplementary Figure S1), indicating that p140Cap controls tumor growth in in vitro conditions

Read more

Summary

Introduction

Previous work from our laboratory and others indicates that in neurons, in physiological conditions, p140Cap has a key role in regulating synaptogenesis, synaptic transmission and synaptic plasticity (Jaworski et al, 2009; Tomasoni et al, 2013; Repetto et al, 2014). P140Cap has been shown to recruit and regulate specific signaling molecules both in breast cancer cells and in healthy neuronal synapses, the molecular complexes and pathways underlying p140Cap function in pathological and physiological conditions are largely unknown. We compared the p140Cap cancer interactome with the synaptic one, revealing that p140Cap does participate in some common pathways in the two distinct cellular contexts, which may underlie shared biological mechanisms between neurons and tumor cells. To our knowledge this is one of the first examples of an adaptor protein that participates to biological complexes that are either specific for organs and tissues, or overlapping to both cancer and neurological functions

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call