Abstract

Individuals with Down syndrome (DS) have more than 100-fold increased risk of acute megakaryoblastic leukemia (AMKL), but its pathogenesis is poorly understood. In this issue of the JCI, Arkoun et al. engineered stepwise DS-AMKL–associated mutations in GATA1, MPL, and SMC3 in human induced pluripotent stem cell (iPSC) clones from individuals with DS to dissect how each mutation affects gene expression control and megakaryocytic differentiation. The authors showed that the mutations cooperatively promote progression from transient myeloproliferative disorder to DS-AMKL. This study highlights the importance of mutation order and context in the perturbations of transcriptional and differentiation pathways involved in the evolution of hematologic malignancies, which will be critical for the development of preventative and therapeutic interventions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.