Abstract

Two new methods of measuring a multidimensional displacement vector using an instantaneous ultrasound signal phase are described, i.e., the multidimensional autocorrelation method (MAM) and multidimensional Doppler method (MDM). A high measurement accuracy is achieved by combining either method with the lateral Gaussian envelope cosine modulation method (LGECMM) or multidirectional synthetic aperture method (MDSAM). Measurement accuracy is evaluated using simulated noisy echo data. Both methods yield accurate measurements comparable to that of our previously developed cross-spectrum phase gradient method (MCSPGM); however, they require less computational time (the order, MDM < MAM approximate, equals MCSPGM) and would provide realtime measurements. Moreover, comparisons of LGECMM and MDSAM performed by geometrical evaluations clarifies that LGECMM has potentials to yield more accurate measurements with less computational time. Both MAM and MDM can be applied to the measurement of tissue strain, blood flow, sonar data, and other target motions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.