Abstract
We discuss the effects of disorder in time-reversal invariant topological insulators and superconductors in three spatial dimensions. For three-dimensional topological insulator in symplectic (AII) symmetry class, the phase diagram in the presence of disorder and a mass term, which drives a transition between trivial and topological insulator phases, is computed numerically by the transfer matrix method. The numerics is supplemented by a field theory analysis (the large-$N_f$ expansion where $N_f$ is the number of valleys or Dirac cones), from which we obtain the correlation length exponent, and several anomalous dimensions at a non-trivial critical point separating a metallic phase and a Dirac semi-metal. A similar field theory approach is developed for disorder-driven transitions in symmetry class AIII, CI, and DIII. For these three symmetry classes, where topological superconductors are characterized by integer topological invariant, a complementary description is given in terms of the non-linear sigma model supplemented with a topological term which is a three-dimensional analogue of the Pruisken term in the integer quantum Hall effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.