Abstract
Vehicle Re-Identification (ReID) is of great significance for public security and intelligent transportation. Large and comprehensive datasets are crucial for the development of vehicle ReID in model training and evaluation. However, existing datasets in this field have limitations in many aspects, including the constrained capture conditions, limited variation of vehicle appearances, and small scale of training and test set, etc. Hence, a new, large, and challenging benchmark for vehicle ReID is urgently needed. In this paper, we propose a large vehicle ReID dataset, called VERI-Wild 2.0, containing 825,042 images. It is captured using a city-scale surveillance camera system, consisting of 274 cameras covering a very large area over 200 km2. Specifically, the samples in our dataset present very rich appearance diversities thanks to the long time span collecting settings, unconstrained capturing viewpoints, various illumination conditions, diversified background environments, and different weather conditions. Furthermore, to facilitate more practical benchmarking, we define a challenging and large test set containing about 400K vehicle images that do not have any camera overlap with the training set. VERI-Wild 2.0 is expected to be able to facilitate the design, adaptation, development, and evaluation of different types of learning models for vehicle ReID. Besides, we also design a new method for vehicle ReID. We observe that orientation is a crucial factor for feature matching in vehicle ReID. To match vehicle pairs captured from similar orientations, the learned features are expected to capture specific detailed differential information for discriminating the visually similar yet different vehicles. In contrast, features are desired to capture the orientation invariant common information when matching samples captured from different orientations. Thus a novel disentangled feature learning network (DFNet) is proposed. It explicitly considers the orientation information for vehicle ReID, and concurrently learns the orientation specific and orientation common features that thus can be adaptively exploited via an adaptive matching scheme when dealing with matching pairs from similar or different orientations. The comprehensive experimental results show the effectiveness of our proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.