Abstract
Vehicle Re-identification (ReID) is of great significance to the intelligent transportation and public security. However, many challenging issues of Vehicle ReID in real-world scenarios have not been fully investigated, e.g., the high viewpoint variations, extreme illumination conditions, complex backgrounds, and different camera sources. To promote the research of vehicle ReID in the wild, we collect a new dataset called VERI-Wild with the following distinct features: 1) The vehicle images are captured by a large surveillance system containing 174 cameras covering a large urban district (more than 200km^2) The camera network continuously captures vehicles for 24 hours in each day and lasts for 1 month. 3) It is the first vehicle ReID dataset that is collected from unconstrained conditionsns. It is also a large dataset containing more than 400 thousand images of 40 thousand vehicle IDs. In this paper, we also propose a new method for vehicle ReID, in which, the ReID model is coupled into a Feature Distance Adversarial Network (FDA-Net), and a novel feature distance adversary scheme is designed to generate hard negative samples in feature space to facilitate ReID model training. The comprehensive results show the effectiveness of our method on the proposed dataset and the other two existing datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.