Abstract
The effect of partial isolation has been studied in disease spreading processes using the framework of susceptible-infected-susceptible (SIS) and susceptible-infected-recovered (SIR) models. The partial isolation is introduced by imposing a restriction: each infected individual can probabilistically infect up to a maximum number n of his susceptible neighbors, but not all. It has been observed that the critical values of the spreading rates for endemic states are non-zero in both models and decrease as 1/n with n, on all graphs including scale-free graphs. In particular, the SIR model with n = 2 turned out to be a special case, characterized by a new bond percolation threshold on square lattice.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have