Abstract
A Susceptible Infective Recovered (SIR) model is usually unable to mimic the actual epidemiological system exactly. The reasons for this inaccuracy include observation errors and model discrepancies due to assumptions and simplifications made by the SIR model. Hence, this work proposes calibration and prediction methods for the SIR model with a one-time reported number of infected cases. Given that the observation errors of the reported data are assumed to be heteroscedastic, we propose two predictors to predict the actual epidemiological system by modeling the model discrepancy through a Gaussian Process model. One is the calibrated SIR model, and the other one is the discrepancy-corrected predictor, which integrates the calibrated SIR model with the Gaussian Process predictor to solve the model discrepancy. A wild bootstrap method quantifies the two predictors' uncertainty, while two numerical studies assess the performance of the proposed method. The numerical results show that, the proposed predictors outperform the existing ones and the prediction accuracy of the discrepancy-corrected predictor is improved by at least 49.95%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.