Abstract
This paper treats a discrete-time single-server finite-buffer exhaustive (single- and multiple-) vacation queueing system with discrete-time Markovian arrival process (D-MAP). The service and vacation times are generally distributed random variables and their durations are integral multiples of a slot duration. We obtain the queue-length distributions at departure, service completion, vacation termination, arbitrary and prearrival epochs. Several performance measures such as probability of blocking, average queue-length and the fraction of time the server is busy have been discussed. Finally, the analysis of actual waiting time under the first-come-first-served discipline is also carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.