Abstract
This paper analyzes a single-server finite-buffer vacation (single and multiple) queue wherein the input process follows a discrete-time batch Markovian arrival process (D-BMAP). The service and vacation times are generally distributed and their durations are integral multiples of a slot duration. We obtain the state probabilities at service completion, vacation termination, arbitrary, and prearrival epochs. The loss probabilities of the first-, an arbitrary- and the last-customer in a batch, and other performance measures along with numerical aspects have been discussed. The analysis of actual waiting time of these customers in an accepted batch is also carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.