Abstract

A discrete version of Lagrangian reduction is developed within the context of discrete time Lagrangian systems on G × G, where G is a Lie group. We consider the case when the Lagrange function is invariant with respect to the action of an isotropy subgroup of a fixed element in the representation space of G. Within this context, the reduction of the discrete Euler–Lagrange equations is shown to lead to the so-called discrete Euler–Poincare equations. A constrained variational principle is derived. The Legendre transformation of the discrete Euler–Poincare equations leads to discrete Hamiltonian (Lie–Poisson) systems on a dual space to a semiproduct Lie algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.