Abstract

We consider the massless Sine–Gordon model in de Sitter spacetime, in the regime β2<4π\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta ^2 < 4 \\pi $$\\end{document} and using the framework of perturbative algebraic quantum field theory. We show that a Fock space representation exists for the free massless field, but that the natural one-parameter family of vacuum-like states breaks the de Sitter boost symmetries. We prove convergence of the perturbative series for the S matrix in this representation and construct the interacting Haag–Kastler net of local algebras from the relative S matrices. We show that the net fulfills isotony, locality and de Sitter covariance (in the algebraic adiabatic limit), even though the states that we consider are not invariant. We furthermore prove convergence of the perturbative series for the interacting field and the vertex operators, and verify that the interacting equation of motion holds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.