Abstract

This paper develops a discrete Hamiltonian system with holonomic constraints with Geometric Constraint Stabilization. It is first shown that constrained mechanical systems with nonconservative external forces can be formulated by using canonical symplectic structures in the context of Hamiltonian systems. Second, it is shown that discrete holonomic Hamiltonian systems can be developed via the discretization based on the Backward Differentiation Formula and also that geometric constraint stabilization can be incorporated into the discrete Hamiltonian systems. It is demonstrated that the proposed method enables one to stabilize constraint violations effectively in comparison with conventional methods such as Baumgarte Stabilization and Gear–Gupta–Leimkuhler Stabilization, together with an illustrative example of linkage mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call