Abstract
The abnormal expression of epidermal growth factor receptors HER1(EGFR) and HER2 is strongly associated with cancer invasion, metastasis, and angiogenesis. Their molecular detection is mainly executed using genetically encoded or antibody-based diagnostic tracers, but no dual-targeting small-molecule bioprobe has been achieved. Here, we report the novel small-molecule fluorescent probes Cy3-AFTN and Cy5-AFTN as potent dual-targeting inhibitors for efficient detection of HER1/HER2 expression in cancer cells and in vivo tumor diagnostic imaging. Unlike the irreversible HER1/HER2 inhibitors, Cy3-AFTN and Cy5-AFTN were designed as reversible/noncovalent probes based on the clinical drug afatinib, by making the molecule structurally impossible for receptor-mediated Michael additions. The synthesized probes were validated with live cell fluorescence imaging, flow cytometry and confocal-mediated competitive binding inhibition, molecular docking study, and in vivo xenograft tumor detection. The probes are competitively replaceable by other HER1/HER2 inhibitors; thus, they are potentially useful in fluorometric high-throughput screening for drug discovery.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have