Abstract

Protein aggregation, such as amyloid fibril formation, is molecular hallmark of many neurodegenerative disorders including Alzheimer's, Parkinson's, and Prion disease. Indole alkaloids are well-known as the compounds having the ability to inhibit protein fibrillation. In this study, we experimentally and computationally have investigated the anti-amyloid property of a derivative of a synthesized tetracyclic indole alkaloid (TCIA), possessing capable functional groups. The fibrillation reaction of Hen White Egg Lysozyme (HEWL) was performed in absence and presence of the indole alkaloid. For quantitative analysis, we used Thioflovin T binding assay which showed ~50% reduction in fibril formation in the presence of 20 μM TCIA. Using TEM imaging, we observed a significant morphological change in our model protein in the presence of TCIA. In addition, we exploited FT-IR assay by which Amide I peak's shifting toward lower wavenumber was clearly observed. Using Molecular Docking, the interaction of the inhibitor (TCIA) with the protein's amyloidogenic region was modeled. Also, different biophysical parameters were calculated by Molecular Dynamics (MD) simulation. Various biochemical assays, conformational change, and hydrophobicity exposure of the protein during amyloid formation indicated that the compound assists HEWL to keep its native structure via destabilizing β-sheet structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.