Abstract

Curli fibrils are proteinaceous bacterial structures formed by amyloid fibrils composed of the major curli subunit CsgA. Like beta-amyloid 1-42, which is associated with brain inflammation and Alzheimer's disease, curli fibrils have been implicated in the induction of host inflammatory responses. However, the underlying mechanisms of amyloid-induced inflammation are not fully understood. In a mouse sepsis model, we show that curli fibrils contributed to Nos2 expression, a hallmark of inflammation, by stimulating Toll-like receptor (TLR) 2. The TLR2 agonist activity was reduced by an amyloidogenicity-lowering amino acid substitution (N122A) in CsgA. Amyloid-forming synthetic peptides corresponding to beta-amyloid 1-42 or CsgA 111-151 stimulated Nos2 production in macrophages and microglia cells through a TLR2-dependent mechanism. This activity was abrogated when an N122A substitution was introduced into the synthetic CsgA peptide. The induction of TLR2-mediated responses by bacterial and eukaryotic amyloids may explain the inflammation associated with amyloids and the resulting pathologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call