Abstract
We investigate characteristics of discontinuous tapered surface plasmon polariton waveguides with a gap (DTG-SPPWs) to control a guided surface plasmon polariton (SPP) at a telecommunication wavelength of 1.55 μm. The DTG-SPPWs are composed of an input 2 μm-wide and 10 μm-long reverse tapered IMI-W (RT-IMI-W) and a 10 μm-long tapered and output 2 μm-wide IMI-W (T-IMI-W) with the 8 μm-long gap. The width and length of the tapered regions in the RT-IMI-W and the T-IMI-W were varied from 2 to 10 μm and 1 to 8 μm, respectively. Gold is used as the metal in the insulator-metal-insulator waveguides (IMI-Ws). The thickness of the gold strips is fixed with 20 nm. A low-loss polymer is used for the 30 μm-thick upper and lower cladding layers. The coupling losses of the DTG-SPPWs are less than 0.055 dB with an 8 μm-long gap and various taper widths up to 10 μm. The normalized transmissions (NTs) of the DTG-SPPWs are less than about -0.060 dB with various taper widths up to 10 μm. The NTs of the DTG-SPPWs are less than about -0.069 dB with various taper lengths up to 8 μm. The maximum NT of about -0.042 dB was obtained using the 6 μm-wide taper width and the 3 μm-long taper length in the DTG-SPPW. The DTG-SPPWs have potential as a new plasmonic modulation device via control of the guided SPP through interaction with an applied force in the gap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.