Abstract

A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. In directional TO (DTO), a normal focused field is emitted and the received signals are beamformed in the lateral direction transverse to the ultrasound beam to increase the amount of data for vector velocity estimation. The approach is self-calibrating as the lateral oscillation period is estimated from the directional signal through a Fourier transform to yield quantitative velocity results over a large range of depths. The approach was extensively simulated using Field IIpro and implemented on the experimental Synthetic Aperture Real-time Ultrasound System (SARUS) scanner in connection with a BK Medical 8820e convex array transducer. Velocity estimates for DTO are found for beam-to-flow angles of 60°, 75°, and 90°, and vessel depths from 24 to 156 mm. Using 16 emissions, the standard deviation (SD) for angle estimation at depths ranging from 24 to 104 mm is between 6.01° and 0.93° with a mean SD of 2.8°. The mean relative SD for the lateral velocity component is 9.2% and the mean relative bias -3.4% or four times lower than for traditional TO. The approach also works for deeper lying vessels with a slight increase in SD to 15.7%, but a maintained bias of -3.5% from 126 to 156 mm. Data for a pulsating flow have also been acquired for 15 cardiac cycles using a CompuFlow 1000 pump. The relative SD was here 7.4% for a femoral artery waveform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call