Abstract

A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. Directional Transverse Oscillation (DTO) is self-calibrating, which increase the estimation accuracy and finds the lateral oscillation period automatically. A normal focused field is emitted and the received signals are beamformed in the lateral direction transverse to the ultrasound beam. A lateral oscillation is obtained by having a receive apodization waveform with two separate peaks. The IQ data are obtained by making a Hilbert transform of the directional signal, and a modified TO estimator can be used to find both the lateral and axial velocity. The approach is self-calibrating as the lateral oscillation period directly is estimated from the directional signal through a Fourier transform. The approach was implemented on the SARUS scanner using a BK Medical 8820e transducer with a focal point at 105.6 mm (F#=5) for Vector Flow Imaging (VFI). A 6 mm radius tube in a circulating flow rig was scanned and the parabolic volume flow of 112.7 l/h (peak velocity 0.55 m/s) measured by a Danfoss Magnetic flow meter for reference. Velocity estimates for DTO are found for 32 emissions at a 90 degrees beam-to-flow angle at a vessel depth of 30 mm. The standard deviation (SD) drops from 9.14% for TO to 5.4%, when using DTO. The bias is −5.05% and the angle is found within +/− 3.93 degrees. At 70 mm a relative SD of 7% is obtained, the bias is −1.74%, and the angle is found within +/− 2.6 degrees showing a low bias across depths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.