Abstract
We present a robust optimization algorithm for the design of electromagnetic coils that generate vacuum magnetic fields with nested flux surfaces and precise quasi-symmetry. The method is based on a bilevel optimization problem, where the outer coil optimization is constrained by a set of inner least squares optimization problems whose solutions describe magnetic surfaces. The outer optimization objective targets coils that generate a field with nested magnetic surfaces and good quasi-symmetry. The inner optimization problems identify magnetic surfaces when they exist, and approximate surfaces in the presence of magnetic islands or chaos. We show that this formulation can be used to heal islands and chaos, thus producing coils that result in magnetic fields with precise quasi-symmetry. We show that the method can be initialized with coils from the traditional two-stage coil design process, as well as coils from a near-axis expansion optimization. We present a numerical example where island chains are healed and quasi-symmetry is optimized up to surfaces with aspect ratio 6. Another numerical example illustrates that the aspect ratio of nested flux surfaces with optimized quasi-symmetry can be decreased from 6 to approximately 4. The last example shows that our approach is robust and a cold-start using coils from a near-axis expansion optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.