Abstract

Electron charge density distributions in layered ferroelectrics Bi4Ti3O12 (BiT) and Bi3.25La0.75Ti3O12 (BLT) are investigated by analyzing high-energy synchrotron-radiation powder diffraction data using the maximum entropy method/Rietveld method. BiT shows that chemical bonding resulting from orbital hybridization is established between Bi–O in the perovskite layer only along the a axis, whereas BLT exhibits isotropic chemical bonding of Bi∕La–O with a high electron density both along the a and b axes. High endurance to polarization fatigue reported for BLT films is suggested to originate from the stabilization of oxygen in the perovskite layer due to the isotropic chemical bonding of Bi∕La–O.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.