Abstract

Direct-gap gain up to 850 cm(-1) at 0.74 eV is measured and modeled in optically pumped Ge-on-Si layers for photoexcited carrier densities of 2.0 × 10(20) cm(-3). The gain spectra are correlated to carrier density via plasma-frequency determinations from reflection spectra. Despite significant gain, optical amplification cannot take place, because the carriers also generate pump-induced absorption of ≈7000 cm(-1). Parallel studies of III-V direct-gap InGaAs layers validate our spectroscopy and modeling. Our self-consistent results contradict current explanations of lasing in Ge-on-Si cavities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.