Abstract

AbstractIndividual 45° [001] tilt grain boundaries in Y1Ba2Cu3O7-x thin films grown on biepitaxial substrates were studied. The thin films were grown using both pulsed organometallic beam epitaxy (POMBE) and laser ablation. Transport characteristics of the individual grain boundaries were measured including resistance - temperature (R-T) and current - voltage (I-V) dependencies with and without an applied magnetic field. In order to elucidate possible structural origins of the differences in transport behavior, the same grain boundaries which were electrically characterized were subsequently thinned for electron-microscopy analysis. Transmission-electron-microscopy and high-resolution-electron-microscopy were used to structurally characterize the grain boundaries. The macroscopic and microscopic structures of two boundaries, a nominally resistive and a superconducting grain boundary, are compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call