Abstract

Low-angle tilt grain boundaries in [001] fiber-textured BaTiO3 thin films were investigated by high-resolution transmission electron microscopy. Extensive observation revealed a very high density of low-angle tilt grain boundaries in the film. The low-angle tilt grain boundaries can be described as periodical arrays of dislocations on {100} and {110} boundary planes. The boundaries with (100) plane on {100} planes are composed of perfect dislocations with Burgers vectors b = a (a = lattice constant of BaTiO3: 0.3992 nm), while the boundaries with (110) plane on {110} planes are composed of the dissociated dislocations with Burgers vectors a/2 . It was thus found that the difference in the boundary plane leads to different dislocation structures along the low-angle grain boundaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call