Abstract
We have measured the polarized visible Raman and FTIR spectra of trialanine and triglycine in D(2)O at acid, neutral, and alkaline pD. From the Raman spectra we obtained the isotropic and the anisotropic scattering. A self-consistent spectral analysis of the region between 1550 and 1800 cm(-1) was carried out to obtain the intensities, frequencies, and halfwidths of the respective amide I bands. A model was developed by means of which the intensity ratios of the amide I bands in all spectra and the respective frequency differences were utilized to determine the orientational angle theta between the peptide groups and the strength of excitonic coupling between the corresponding amide I modes. By exploiting results from a recent ab initio study on triglycine (Torii, H; Tasumi, M. J. Raman Spectrosc. 1998, 29, 81), we used these parameters to determine the dihedral angles phi and psi between the peptide groups. Our results show that trialanine adopts a 3(1)-helical structure in D(2)O for all of its three protonation states. The structure is insensitive to the carboxylate protonation and changes only slightly with N-terminal protonation. Triglycine is structurally more heterogeneous in the zwitterionic and the cationic state. Our spectral analysis suggests that 3(1)-helices coexist with right-handed alpha-helical and/or with beta-turn conformations. The N-terminal protonation stabilizes the 3(1)-structure. Our study provides compelling evidence that tripeptides adopt stable conformations in aqueous solution and that they are suitable model systems to investigate the initiation of secondary structure formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.