Abstract
Digitally enhanced technologies are transforming every aspect of the manufacturing sector towards the era of digital manufacturing. Traditional lubricant development methods involving systematic but time-consuming iterative processes is still extensively used in the metal forming industry. In the present study, a novel digitally enhanced lubricant development scheme was proposed by leveraging a mechanism-based interactive friction modelling framework and quantitative and comprehensive evaluation of lubricant performance via the data-centric lubricant limit diagrams. By predicting transient lubricant behaviour following the complex contact condition evolution experienced in actual forming operations, a close association and quantified relation between the lubricant performance and its properties such as viscosity, evaporation rate and fraction of dry matter was established. This can facilitate the optimisation efficiency of lubricant parameters and minimise the experimental cost for iterative lubricant trials. A case study was conducted in this work to develop a customised lubricant using this digitally enhance scheme for the target hot stamping process based on a benchmark lubricant as a reference. Further industrial forming tests of an automotive component were conducted to validate the ideal performance of the customised lubricant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.