Abstract
Sewer infrastructure is vital for flood prevention, environmental protection, and public health. As part of sewer infrastructure, sewer systems are prone to degradation. Traditional maintenance methods for sewer systems are largely manual and reactive and rely on inconsistent data, leading to inefficient maintenance. The KaSyTwin research project addresses the urgent need for efficient and resilient sewer system management methods in Germany, aiming to develop a methodology for the semi-automated development and utilization of digital twins of sewer systems to enhance data availability and operational resilience. Using advanced multi-sensor robotic platforms equipped with scanning and imaging systems, i.e., laser scanners and cameras, as well as artificial intelligence (AI), the KaSyTwin research project focuses on generating digital twin-enabled representations of sewer systems in real time. As a project report, this work outlines the research framework and proposed methodologies in the KaSyTwin research project. Digital twins of sewer systems integrated with AI technologies are expected to facilitate proactive maintenance, resilience forecasting against extreme weather events, and real-time damage detection. Furthermore, the KaSyTwin research project aspires to advance the digital management of sewer systems, ensuring long-term functionality and public welfare via on-demand structural health monitoring and non-destructive testing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have