Abstract

The field of tissue engineering continues to advance with the discovery of new biomaterials, growth factors and scaffold fabrication techniques. However, for the ultimate success of a tissue engineered construct the issue of nutrient transport to the scaffold interior needs to be addressed. Often, the requirements for adequate nutrient supply are at odds with other scaffold design parameters such as mechanical properties as well as scaffold fabrication techniques, leading to incongruities in finding optimal solutions. The goal of this review article is to provide an overview of the various engineering design factors that promote movement of nutrients, waste and other biomolecules in scaffolds for musculoskeletal tissue engineering applications. The importance of diffusion in scaffolds and how it is influenced by porosity, permeability, architecture, and nutrient mixing has been emphasized. Methods for measuring porosity and permeability have also been outlined. The different types of biomaterials used, scaffold fabrication techniques implemented and the pore sizes/porosities obtained over the past 5 years have also been addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.