Abstract
The purpose of this study was to investigate the efficacy of magnetic resonance imaging (MRI) radiomics in differentiating hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma (ICC). The clinical and MRI data of 129 pathologically confirmed HCC patients and 48 ICC patients treated at the Affiliated Hospital of North Sichuan Medical College between April 2016 and December 2021 were retrospectively analyzed. The patients were randomly divided at a ratio of 7:3 into a training group of 124 patients (90 with HCC and 34 with ICC) and a validation group of 53 patients (39 with HCC and 14 with ICC). Radiomic features were extracted from axial fat suppression T2-weighted imaging (FS-T2WI) and axial arterial-phase (AP) and portal-venous-phase (PVP) dynamic-contrast-enhanced MRI (DCE-MRI) sequences, and the corresponding datasets were generated. The least absolute shrinkage and selection operator (LASSO) method was used to select the best radiomic features. Logistic regression was used to establish radiomic models for each sequence (FS-T2WI, AP and PVP models), a clinical model for optimal clinical variables (C model) and a joint radiomics model (JR model) integrating the radiomics features of all the sequences as well as a radiomics-clinical model combining optimal radiomic features and clinical risk factors (RC model). The performance of each model was evaluated using the area under the receiver operating characteristic curve (AUC). The AUCs of the FS-T2WI, AP, PVP, JR, C and RC models for distinguishing HCC from ICC were 0.693, 0.863, 0.818, 0.914, 0.936 and 0.977 in the training group and 0.690, 0.784, 0.727, 0.802, 0.860 and 0.877 in the validation group, respectively. The results of this study suggest that MRI-based radiomics may help noninvasively differentiate HCC from ICC. The model integrating the radiomics features and clinical risk factors showed a further improvement in performance.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have