Abstract

Preoperative diagnosis of microvascular invasion (MVI) and tumor grading of intrahepatic mass-forming cholangiocarcinoma (IMCC) using imaging findings can facilitate patient treatment decision-making. This study was conducted to establish and validate nomograms based on magnetic resonance imaging (MRI) radiomics and morphological features for predicting the MVI and tumor grading of IMCC before radical hepatectomy. A total of 235 patients with resected IMCC at the Chinese Academy of Medical Sciences and Peking Union Medical College were divided into a training set (n=167) and a validation set (n=68), retrospectively. Clinical data and MRI morphological features were recorded. Univariate and multivariate analyses were conducted to identify the significant features for the prediction of MVI and tumor grading. Radiomics features were extracted from T2-weighted imaging fat-suppressed and diffusion-weighted imaging (DWI). Radiomics signatures (rad_scores) were built based on the least absolute shrinkage and selection operator (LASSO) method. Then, the nomograms were constructed by combining the rad_scores and the significant clinical or MRI morphologic features. The predictive performances for MVI and tumor grading were evaluated by the area under the receiver operating characteristic curve (AUC), calibration, and clinical utility. Totals of 16 and 9 radiomics features were selected to build the rad_scores for the prediction of MVI and tumor grading for the training and validation set, respectively. The nomogram for the prediction of MVI comprised the morphologic features including number of tumors, tumor margin, and rad_score. For the prediction of tumor grading, the nomogram comprised the number of tumors, tumor necrosis, and rad_score. The best discriminations were observed in the training and validation sets for the MVI nomogram [AUCs of 0.874, 95% confidence interval (CI): (0.822-0.926) and 0.869 (0.783-0955)] and tumor grading nomogram [AUCs of 0.827 (0.763-0.891) and 0.848 (0.759-0.937)]. Decision curve analysis (DCA) further confirmed the clinical utilities of the nomograms. Nomograms based on MRI radiomics and morphological features can effectively predict the individualized risks of MVI and tumor grading for IMCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call