Abstract

Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) is an important forest insect pest around the world. It attacks a variety of broad-leaf trees. It has caused serious economic and ecological damage to its new habitats. A mixture of Bt and chlorbenzuron has a higher toxicity and faster killed than those of either agent alone to the 4th instar larvae of H. cunea both by the lab and field test results, and the toxic effect of the mixture treatment was significantly enhanced. Using proteomics technology, including SDS-PAGE and MALDI-TOF-TOF MS, we analyzed differentially expressed proteins of the peritrophic membrane (PM) of the 4th instar larvae of H. cunea, which were treated with the mixture. We identified 91 significantly differentially expressed proteins of the PM of the 4th instar larvae of H. cunea and those proteins were found to be involved in different metabolic pathways and processes. The energy-related and structural proteins made up the largest proportion of all of the identified proteins, and the mixture treatment of proteins was the small proportion of the identified structural proteins and energy-related proteins among the Bt, chlorbenzuron, and mixture treatments. Based on the proteomic data, we found that some proteins and their corresponding functions and pathways were related to the lethal mechanisms observed in 4th instar larvae of H. cunea when treated by the mixture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call