Abstract
In this paper, RSA cryptosystem was implemented on an FPGA as resistant against Differential Power Analysis attacks. There are hardware and algorithmic countermeasures against power analysis attacks. This is the first FPGA realization of an algorithmic countermeasure which makes RSA resistant to power analysis attacks. Modular exponentiation is realized with Montgomery Modular Multiplication. The Montgomery modular multiplier has been realized with carry save adders. Carry save representation has been used throughout the RSA encryption algorithm. The protected implementation resulted in 66,66 MHz of clock frequency, 84,42 Kb/s of throughput, and 6,06 ms of total exponentiation time and occupied an area of 10986 slices with the use of the built-in block SelectRAM structure inside XCV1000E.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.