Abstract

Power analysis attack is one of the most important and effective side channel attack methods, that has been attempted against implementations of cryptographic algorithms. In this paper, we investigate the vulnerability of SIMON [5] and LED [16] lightweight block ciphers against Differential Power Analysis (DPA) attack. Firstly, we describe the power model used to mount the attack on Field Programmable Gate Array (FPGA) implementation of SIMON and LED block ciphers. Then, we proceed to experimentally verified DPA attack, which is the first successful DPA attack on the algorithms. Our attack retrieves complete 64-bit key of SIMON32/64 and LED-64 with a complexity of 176 and 218 hypotheses respectively. Finally, we present our analysis on other versions of SIMON and LED. Our DPA results exhibits the weakness of algorithms, which emphasize the need for secure implementation of SIMON and LED.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call