Abstract

Chlorocarbons were ionized through gas phase chemistry at ambient pressure in air and resultant ions were characterized using a micro-fabricated drift tube with differential mobility spectrometry (DMS). Positive and negative product ions were characterized simultaneously in a single drift tube equipped with a 3 mCi (63)Ni ion source at 50 degrees C and drift gas of air with 1 ppm moisture. Scans of compensation voltage for most chlorocarbons produced differential mobility spectra with Cl(-) as the sole product ion and a few chlorocarbons produced adduct ions, M (.-) Cl(-). Detection limits were approximately 20-80 pg for gas chromatography-DMS measurements. Chlorocarbons also yielded positive ions through chemical ionization in air and differential mobility spectra showed peaks with characteristic compensation voltages for each substance. Field dependence of mobility was determined for positive and negative ions of each substance and confirmed characteristic behavior for each ion. A DMS analyzer with a membrane inlet was used to continuously monitor effluent from columns of bentonite or synthetic silica beads to determine breakthrough volumes of individual chlorocarbons. These findings suggest a potential of DMS for monitoring subsurface environments either on site or perhaps in situ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.