Abstract
A microfabricated planar differential ion mobility spectrometer operating from 0.4 to 1.55 atm in a supporting atmosphere of purified air was used to characterize the effects of pressure and electric field strength on compensation voltage, ion transmission, peak width, and peak intensity in differential mobility spectra. Peak positions, in compensation voltage as a function of separating rf voltage, were found to vary with pressure in a way that can be simplified by expressing both compensation and separation fields in Townsend units for E/N. The separation voltage providing the greatest compensation voltage and the greatest resolution is ion-specific but often occurs at E/N values that are unreachable at elevated pressure because of electrical breakdown. The pressure dependence of air breakdown voltage near 1 atm is sublinear, allowing higher E/N values to be reached at reduced pressure, usually resulting in greater instrumental resolution. Lower voltage requirements at reduced pressure also reduce device power consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.