Abstract
Nitrogen is one of the most important elements involved in ecosystem biogeochemical cycling. However, little is known about the characteristics of nitrogen cycling during the ice-covered period in seasonally frozen lakes. In this study, shotgun metagenomic sequencing of subglacial water and sediment from Lake Ulansuhai was performed to identify and compare nitrogen metabolism pathways and microbes involved in these pathways. In total, ammonia assimilation was the most prominent nitrogen transformation pathway, and Bacteria and Proteobacteria (at the domain and phylum levels, respectively) were the most abundant portion of microorganisms involved in nitrogen metabolism. Gene sequences devoted to nitrogen fixation, nitrification, denitrification, dissimilatory nitrate reduction to ammonium, and ammonia assimilation were significantly higher in sediment than in surface and subsurface water. In addition, 15 biomarkers of nitrogen-converting microorganisms, such as Ciliophora and Synergistetes, showed significant variation between sampling levels. The findings of the present study improve our understanding of the nitrogen cycle in seasonally frozen lakes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.