Abstract

Wheat and rice produce nutritious grains that provide 32% of the protein in the human diet globally. Here, we examine how genetic modifications to improve assimilation of the inorganic nitrogen forms ammonium and nitrate into protein influence grain yield of these crops. Successful breeding for modified nitrogen metabolism has focused on genes that coordinate nitrogen and carbon metabolism, including those that regulate tillering, heading date, and ammonium assimilation. Gaps in our current understanding include (1) species differences among candidate genes in nitrogen metabolism pathways, (2) the extent to which relative abundance of these nitrogen forms across natural soil environments shape crop responses, and (3) natural variation and genetic architecture of nitrogen-mediated yield improvement. Despite extensive research on the genetics of nitrogen metabolism since the rise of synthetic fertilizers, only a few projects targeting nitrogen pathways have resulted in development of cultivars with higher yields. To continue improving grain yield and quality, breeding strategies need to focus concurrently on both carbon and nitrogen assimilation and consider manipulating genes with smaller effects or that underlie regulatory networks as well as genes directly associated with nitrogen metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call