Abstract
PurposeBoth repetitive peripheral magnetic stimulation (rPMS) and transcutaneous electrical current stimulation (TES) could elicit the limb movements; it is still unclear how subjective sensation is changed according to the amount of limb movements. We investigated the pain and discomfort induced by newly developed rPMS and TES of peripheral nerves in the dorsal forearm.MethodsThe subjects were 12 healthy adults. The stimulus site was the right dorsal forearm; thus, when stimulated, wrist dorsiflexion was induced. The rPMS was delivered by the new stimulator, Pathleader at 10 stimulus intensity levels, and TES intensity was in 1-mA increments. The duration of each stimulation was 2 s. The analysis parameters were subjective pain and discomfort, measured by a numerical rating scale. The rating scale at corresponding levels of integrated range of movement (iROM) induced by rPMS or TES was compared. The subjective values were analyzed by two-way repeated measures ANOVA with the stimulus conditions (rPMS, TES) and the seven levels of iROM (20–140 ºs).ResultsIn the rPMS experiments, stimuli were administered to all subjects at all stimulus intensities. In the TES experiments, none of the subjects dropped out between 1 and 16 mA, but there were dropouts at each of the intensities as follows: 1 subject at 17 mA, 20 mA, 22 mA, 23 mA, 27 mA, 29 mA and 2 subjects at 21 mA, 24 mA, 26 mA. The main effects of the stimulus conditions and iROM were significant for pain and discomfort. Post hoc analysis demonstrated that pain and discomfort in rPMS were significantly lower compared to TES when the iROM was above 60 ºs and 80 ºs, respectively.ConclusionNew rPMS stimulator, Pathleader, caused less pain and discomfort than TES, but this was only evident when comparatively large joint movements occurred.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have